COD和BOD方法、及检测仪存在什么缺陷?COD水质检测仪 BOD检测仪
COD和BOD方法、及检测仪存在什么缺陷
BOD测定方法决定了,实际使用水样只能消耗一部分DO,对应有机物浓度范围大约是几个mg/L。有些污染物在这一浓度范围内生化性不坏,但是实际废水中因污染物浓度高,产生新的物理、化学、生化性质,导致BOD假阳性。上述性质变化可能是渗透压、pH、表面性质(有表面活性剂效应的物质超过临界浓度后影响传质)等。这类废水启动难,但只要反应器内不积累,很容易对付。
例1:渗透压—糖。糖生化性,但高浓度糖水的渗透压高,直接生化性极差。(南方的蜜饯就是用高浓度糖水来保鲜的)。因BOD测定方法缺陷,必须稀释到几个ppm水平才能测定,因此渗透压问题被绕过去了。当然不会有人直接排放这
么高浓度的糖水,且即使蜜饯浓度高,进入生化系统后只要糖可以在低浓度下降解,体系中始终不会出现积累渗透压问题。
例2:pH—柠檬酸可直接进入三羧酸循环,生化性远超过葡萄糖。但到了一定浓度,废水明显为酸性,可以放几个月都不臭。做过油脂工厂废水的朋友们对酸性缓冲溶液型废水一定有有印象。当然用上一段所提解决方法也好用。
例3:蛋白质变性—甲醛。甲醛测定BOD奇高。但高浓度甲醛别名是福尔马林,可泡标本!
COD和BOD方法、及检测仪存在什么缺陷?COD水质检测仪 BOD检测仪
例4:极少数有机物因‘锁钥效应’,浓度越高,越不利于降解。大家有兴趣不妨查阅专业生物化学。
例5:界面性质—洗涤剂。这与BOD测定方法的另外一项内在缺陷有关。BOD测定水样的DO变化不可以太小,否则测定缺乏重现性。如果真能准确测定ppb级别的DO消耗值,其实直链型洗涤剂—LAS的生化性至少不是很差。问题是LAS浓度稍微高一点儿,就达到临界浓度,改变界面性质,严重影响实际生化。
例6:咸菜也难直接生化。向糖水中加入大量盐分,测定BOD很高,但持续进入生化系统后,虽然糖可降解,盐却几乎没有变化,后果是高BOD废水把微生物腌制成了咸菜。此类废水特点是:废水中有一些生化惰性物质,低浓度下不影响生化甚至是微生物*的物质(例如氯离子、硫酸根离子等),一定浓度下影响废水整体物理、化学性质。与前面的5个例子不同,这类废水不可能直接用生化法处理,但测定B/C也可能很高。此类废水算是一种特殊变例。
例7:油脂。各位水友可注意过油脂的BOD?生物油脂的生化性至少是不差,做过屠宰废水的都知道,可是油脂实际平均降解周期并不短,5日BOD并不高。然而屠宰废水的处理一般有几个小时就可以获得满意效果,且反应器内不严重积累。因为有些有机物可以被微生物先吸附,相当于含在嘴里,虽然消化时间可能像吞吃了羚羊的蟒蛇一样长,但是—出水没有羚羊。这一例子对于BOD电极来说是个坏事:SS态有机物如何能被电极迅速测定?
2.2 COD方法、仪器内在缺陷。
2.2.1物理缺陷:常规生化处理,水温顶多三十度出头。重铬酸钾法COD测定,加热回流时,沸点70度以下的有机物会损失很多。现在开始流行的160度高温降解,影响更大。
2.2.2化学缺陷:银盐催化对直链脂肪烃效果还可以,对芳香烃效果不是一般的差。
例8:吡啶实际生化性很差,可是测定B/C>>1!
例9:常见有机物:苯(注意取样前充分震荡、乳化)、甲醛、盐酸二甲胺、DMF、汽油(震荡、乳化)、氯仿、醋酸、甲醇、醋酸铵,COD与理论值都差很远,且缺少重现性,数据可以令人崩溃!
2.2.3选择性缺陷:重铬酸钾法的氧化性在一些场合不够强,不能代表全部有机物;然而对无机物,有时也一锅端氧化。
例10:亚铁。当然可以被氧化,否则如何用亚铁盐滴定?可是这是一种常见无机物。
例11:双氧水。也是无机物,且理论上双氧水的COD是负值。实际上会被重铬酸钾一锅煮掉,而且是缺少重现性的正值。搞Fenton的水友有体会吧.
一.为什么需要BOD与COD无疑,污水中多数污染物是有机物。人类已经发现的有机物有几千万种,未发现的不知有多少种。一一表达不现实,有必要用一个简单易行的统一指标。
1.1目前污水重要的处理方法是生化法特别是好氧法。用微生物在好氧条件下降解有机物的氧气消耗来表达有机物浓度,可行且有很强的实战意义。因此需要BOD。
1.2无疑,BOD应用无穷长时间来测定,即BODu。这也不现实。由于有实际意义的HRT不会太久,因此可以用几十天的BOD来近似代替BODu。为避免硝化影响,时间还要再短一些,因此一般使用20日BOD。
1.3 20日BOD测定周期也很长。目前流行的是5日BOD。
1.4 为和社会工作周期吻合,欧洲习惯用7日BOD。
1.5 5日BOD时间也不短,因此需要更快捷的方法。COD用激烈的化学氧化法,可以相对迅速获得结果,弥补时间缺陷。
1.6高锰酸钾氧化性强,且自身颜色鲜明,可用作COD方法。高锰酸钾颜色鲜明,特别适合在低浓度下准确测定,因此在给水领域盛行。日本在污水领域也很流行。(所以日本废水BOD经常表达得比COD还高,包括生活污水)。
1.7重铬酸钾在强酸条件下,加热回流时氧化能力更粗暴,多数场合氧化充分。世界范围内流行。
1.8在更暴力的反应氛围下,一把火烧掉有机物,测定氧消耗量或二氧化碳产量,测定更可靠。此即TOD与TOC。
1.9明确知道污水中各主要污染物构成与比例,可以根据分子式直接计算,即理论COD。不过实际过程中往往不易实现或没有必要实现。
COD和BOD方法、及检测仪存在什么缺陷?COD水质检测仪 BOD检测仪
水质检测仪应该注意什么?
一、取样的准确问题。在标定卡尔-费休试剂时需要取用10mg水,尽量使用10ul取样器,这样不但准确、速度快,还能够防止水滴粘附。同样地,取用甲醇试剂、乙酯也有类似的问题,取放完毕后应注意尽量缩短反应池打开的时间。
二、磁性搅拌速度调整。在反应池中,因为滴定试剂加入时在局部,与电极不在一处,因此搅拌速度以快到不形成湍流为止,这样可以快达到终点。
三、水分测定仪应该远离强磁场,避免工作时电子显示跳动,出现不正常现象。手动的水分测定仪,因为必须使用玻璃自动滴定管计量卡尔-费休试剂和甲醇溶剂,而玻璃滴定管本身因为平衡压力的关系,又必须与外界接通。
四、滴定速度设定应先快后慢。滴定时先快速以尽量缩短试验时间,而在接近终点时应变慢,这样可提高计量度。
五、系统全密闭问题。卡尔-费休试剂液路部分连接一定要紧固,从试剂瓶到计量泵再到反应池,否则发生试剂泄漏将直接影响测试结果。其不密闭的另一个问题是测试时由于卡尔费休试剂在试验中吸收空气水分,会导致滴定终点延迟。
六、在调整滴定管的滴定速度时,调整到1滴/秒。滴定速度太快将导致到达终点时产生的延时误差较大;而滴定速度太慢则会延长测试的过程,上述干扰容易导致迟迟不到达终点。
七、系统尽量密闭。手动的水分测定仪需要在吸球管路和玻璃滴定管上口加接填充干燥剂的U型管,以便减少空气水分对测试结果的干扰。在空气相对湿度大于70%的环境下,应尽量不安排水分测试。
八、当日试验完毕后,一定要排空系统中的卡尔-费休试剂,然后用甲醇清洗干净,千万不能用水清洗系统,因为其不容易挥发,将造成下次试验时卡尔-费休试剂标定不实。